Why the Blood-Brain Barrier Is So Critical (and How to Maintain It)

blood_brain_barrierYou all know about intestinal permeability, or “leaky gut.” The job of the gut lining is to be selectively permeable, allowing helpful things passage into the body and preventing harmful things from getting in. Nutrients get through, toxins and pathogens do not. Leaky gut describes the failure of this vetting process. But what about “leaky brain”?

A similarly dynamic barrier lies between the brain and the rest of the body: the blood-brain barrier. Since the brain is the seat of all the conscious machinations and subconscious processes that comprise human existence, anything attempting entry receives severe scrutiny. We want to admit glucose, amino acids, fat-soluble nutrients, and ketones. We want to reject toxins, pathogens, and errant immune cells. Think of the blood-brain barrier like the cordon of guards keeping the drunken rabble from spilling over into the VIP room in a nightclub.

The blood-brain barrier (or BBB) can get leaky, just like the gut lining. This is bad.

A compromised BBB has been implicated in many neurodegenerative diseases, like Alzheimer’s, Parkinson’s, and vascular dementia.

More generally, the BBB regulates passage of inflammatory cytokines into the brain, prevents fluctuations in serum composition from affecting brain levels, and protects against environmental toxins and infectious pathogens from reaching the brain. A leaky BBB means the floodgates are open for all manner of unpleasantries to enter the brain.

Some pathogens even wield chemical weaponry that blasts open the blood-brain barrier, giving them—and anything else in the vicinity—access to the brain. To prepare for that, you must support the integrity of your blood-brain barrier.

How?

Optimize your B vitamin intake

In adults with normal B vitamin levels, mild cognitive impairment, high homocysteine levels, and a leaky BBB, taking vitamins B12, B6, and B9 (folate) restored the integrity of the blood-brain barrier.

Review this post and make sure you’re getting the B vitamins you need. Primal folks tend to overlook them.

Nourish your gut

A leaky gut accompanies, and maybe causes, a leaky brain. Funny how that works, eh?

It’s a rodent study, but it’s quite illustrative: a fecal transplant from healthy mice with pristine BBB integrity to unhealthy mice with leaky BBB and pathogen-filled guts restored the integrity of the blood-brain barrier.

DIY fecal transplants are an extreme intervention. Until that becomes more feasible, simply eating more prebiotic fiber, experimenting with resistant starch, taking a quality probiotic, and eating fermented foods on a regular basis will get you most of the way there.

Eat plenty of magnesium

Okay, Sisson. Enough already with the magnesium. We get it! But magnesium can attenuate BBB permeability, even if you inject an agent explicitly designed to induce leaky blood-brain barriers.

This is yet another reason to eat enough magnesium-rich foods (like spinach, almonds, blackstrap molasses, winter squash), drink magnesium-rich mineral water (I love Gerolsteiner, but you can also just go down to the local Euro food market and check the labels for high-Mg waters), or take a good magnesium supplement (anything ending in “-ate” like magnesium glycinate or citrate).

Don’t eat a 40% cocoa butter diet

Rodents given a 40% saturated fat (from cocoa butter) diet experienced elevated BBB permeability.

Except wait: The remaining 60% of calories was split up between white sugar, wheat starch, casein, and dextrin (PDF). So this isn’t the type of 40% SFA diet you folks are eating.

Except wait again: Adding in either aged garlic extract, alpha lipoic acid (ALA), niacin, or nicotinamide completely abolished the increase in permeability.

It looks like a refined diet high in saturated fat and sugar/starch and absent any phytonutrient-rich plant foods like garlic or antioxidant supplements like ALA will cause elevated BBB permeability (in rodents). I’m not sure I’d recommend a 40% SFA diet either way, however. Balance is probably better.

Use phytonutrient-rich plants and spices

Recall the study from the last section where some garlic extract was enough to eliminate the bad BBB effects of a refined lab diet. That’s because aged garlic extract is particularly rich in phytonutrients with strong antioxidant effects. What about other fruits, vegetables, and spices with different phytonutrients—do those also help BBB function?

Curcumin (from turmeric) certainly helps. Astragalus root, used in many ancient medical traditions, can help. Sulforaphane, from cruciferous veggies like broccoli, Brussels sprouts, and cabbage, shows promise.

Drink coffee and/or tea

As phytonutrient-rich plants, they technically belong in the previous section, but coffee and tea are so special that they deserve their own space. Both are sources of caffeine, a noted protector of BBB integrity.

Supplements can help

Supplement forms of the aforementioned nutrients are worth a look. Also:

Alpha-GPC (a type of choline that readily crosses the blood-brain barrier) has been shown to reduce BBB permeability in hypertensive rats.

Inositol (which you can get from foods like egg yolks but not in very large amounts) improves BBB integrity. Another option is to consume phytate-containing foods; if you’ve got the right gut bacteria, you can convert phytate into inositol.

Berberine, noted anti-diabetic compound, reduces BBB permeability and increases resistance to brain damage following head trauma.

Control your blood pressure

Both acute and chronic hypertension increase BBB permeability. This means you’ll have to control your sleep and stress. You’ll need to reduce insulin resistance. Eat dark chocolate (the horror). Figure out if you’re salt-sensitive (you may even have to increase salt intake if it’s too low). Get enough magnesium (yes, again) and potassium.

Sleep

Sleep really is everything. You can’t avoid it, and if you skimp on it, things fall apart. The blood-brain barrier is no exception: sleep restriction impairs BBB function and increases permeability.

If you can’t stick to the bedtime you know is ideal, a little (0.25-0.5mg) melatonin can help set your circadian rhythm. Plus, supplementary melatonin may also preserve BBB integrity.

Don’t drink too much alcohol

Alcohol is a tough one. While I just wrote a big post explaining the merits of wine consumption, ethanol is undoubtedly a poison in high doses, and I derived real benefits when I gave it up for a few months. One way alcohol exerts its negative effects is by inducing BBB dysfunction. This allows both the pleasant effects of alcohol (low-dose ethanol migrating across the BBB and directly interacting with neurons, triggering endorphins and interacting with GABA receptors) and the negative effects (high-dose ethanol migrating across the BBB to damage the neurons, leaving the door open long enough for immune cells to sneak in and cause all sorts of trouble).

Stimulate your vagal nerve

After a traumatic brain injury or stroke, the resultant increase in BBB permeability floods the brain with inflammatory cytokines, causes swelling and neuronal death, and worsens the prognosis. Stimulating the vagal nerve after such an injury decreases the BBB permeability and improves the prognosis.

One treatment for epilepsy is to wear vagal nerve stimulators which send light electronic pulses to the nerve, akin to a pacemaker for the brain. Easier options include humming, cold water exposure (even just splashing the face can help), singing, chanting, meditating, deep breathing, coughing, moving your bowels (or summoning the same abdominal pressure required for said movement; girding your core for a heavy squat or deadlift should also work along the same lines), and many more.

Perhaps an entire post on the vagal nerve is in order. It’s an interesting area that impacts more than just the BBB.

Stop eating so often

Ghrelin is the hunger hormone. When you haven’t eaten in a while, ghrelin tells you that it’s time to eat. It also increases blood-brain barrier stability after (again) a traumatic brain injury.

So, never eat? No. But make sure to feel actual hunger. It’s the best spice, and it confers a whole host of other benefits, including better blood-brain barrier function. Heck, try intermittent fasting for the ultimate boost to ghrelin.

You might notice that a lot of the studies I cite involve traumatic brain injuries to rodents. Dropping a weight on a rat’s head or triggering a stroke in a mouse are two of the most reliable ways to induce BBB permeability. Brain injuries are also quite common in humans, and the BBB permeability that results is a major therapeutic target, but we can’t study it so easily in people. While acute and chronic BBB permeability are different beasts, and mice are not men, they operate along the same rough pathway.

That’s about it for today, folks. I hope you feel encouraged and able to fortify your blood-brain barrier. Don’t wait for cognitive decline to set in. Get started now.

How do you improve the integrity of your blood-brain barrier? Have you even considered it prior to today?

Source:  www.marksdailyapple.com

Aging Now a Disease? Humanity Should Treat It Like One, Scientist Says

Scientists are starting to reconsider our major preconception about aging. Is it really a natural phenomenon or a disease that could be treated?

It may be helpful to remember that under this question are a lot of factors. For instance, is aging really just a natural process that we should recognize? Why then are we so focused on creating technologies that will reverse its effects?

Philosophers have regarded aging as one of the reasons why we are afraid of death, and it has led to quite a lot of lessons about “cherishing life” and “making every moment count.”

However, the biomedical community seems to be on the verge of rethinking their stance on the matter.

Cambridge University’s Aubrey de Grey has pondered the question for a while. A trained computer scientist and a self-taught biologist and gerontologist, de Grey has been trying to reframe our mentality about aging.

In an article by Scientist, De Grey said it may be time to consider aging as a pathologic process, as in one like cancer and diabetes that can be “treated.”

It is important to remember that “aging” is the term we use to describe the changes our bodies undergo over time. The early changes are good as we develop stronger muscles and better reflexes. However, our problems begin when we start getting thinner hair and weaker resistances. Not to mention, the human body has different parts that develop at different paces.

Any wrong move in the pacing of the growth of our body results to diseases. For instance, while lipids are a natural part of our diet, too much of it will make our blood vessels harden and narrow, leading to heart attacks.

De Grey said we can (and we should) view aging as something that could be prevented. A team of scientists also share this belief.

In their paper published in Frontiers in Genetics, scientists Sven Bulterijs, Raphaella Hull, Victor Bjork, and Avi Roy believe that a lot of diseases that affect us over time are caused by aging.

Diseases such as the Hutchinson-Gilford Progeria syndrome, Werner syndrome, and Dyskeratosis Congenita are considered diseases that affect teenagers and young adults. However, they are considered normal and unworthy of attention when they are seen in older people.

Interestingly, common bodily afflictions that come with aging such as hypertension, atherosclerosis, dementia, and sarcopenia are all considered “diseases.” What makes aging different?

And while some consider the debate as something purely semantic, as in the way in which we define certain terms, there are “benefits” for such a label.

For instance, labeling aging as a disease will better help physicians make more medical efforts to remove and treat conditions associated with aging that we normally ignore. Calling something a disease will merit some form of commitment to medical intervention.

Source: natureworldnews

Cold sores increase risk of dementia

DementiaInfection with herpes simplex virus increases the risk of Alzheimer’s disease. Researchers at Umeå University, Sweden, claim this in two studies in the journal Alzheimer’s & Dementia.

“Our results clearly show that there is a link between infections of herpes simplex virus and the risk of developing Alzheimer’s disease. This also means that we have new opportunities to develop treatment forms to stop the disease,” says Hugo Lövheim, associate professor at the Department of Community Medicine and Rehabilitation, Geriatric Medicine, Umeå University, who is one of the researchers behind the study.

Alzheimer’s disease is the most common among the dementia diseases. In recent years research has increasingly indicated that there is a possible connection between infection with a common herpes virus, herpes simplex virus type 1, and Alzheimer’s disease. A majority of the population carries this virus. After the first infection the body carries the virus throughout your lifetime, and it can reactivate now and then and cause typical mouth ulcer. The hypothesis which links the herpes virus and Alzheimer’s disease is based on that a weakened immune system among the elderly creates opportunities for the virus to spread further to the brain. There this can in turn start the process which results in Alzheimer’s disease.

Hugo Lövheim and Fredrik Elgh, professor at the Department of Virology, have now confirmed this link in two large epidemiological studies. In one study, which is based on the Betula project, a study on aging, memory and dementia, the researchers show that a reactivated herpes infection doubled the risk of developing Alzheimer’s disease. This study had 3,432 participants who were followed for 11.3 years on average. In another study, samples donated to the Medical Biobank at Umeå University from 360 people with Alzheimer’s disease were examined and as many matched people who had not developed dementia. The samples were taken on average 9.6 years before diagnosis. This study showed an approximately doubled risk of developing Alzheimer’s disease if the person was a carrier of the herpes virus.

“Something which makes this hypothesis very interesting is that now herpes infection can in principle be treated with antiviral agents. Therefore within a few years we hope to be able to start studies in which we will also try treating patients to prevent the development of Alzheimer’s disease,” says Hugo Lövheim.


Story Source:

The above story is based on materials provided by Umeå universitet. Note: Materials may be edited for content and length.


Journal References:

  1. Hugo Lövheim, Jonathan Gilthorpe, Anders Johansson, Sture Eriksson, Göran Hallmans, Fredrik Elgh. Herpes simplex infection and the risk of Alzheimer’s disease—A nested case-control study. Alzheimer’s & Dementia, 2014; DOI: 10.1016/j.jalz.2014.07.157
  2. Hugo Lövheim, Jonathan Gilthorpe, Rolf Adolfsson, Lars-Göran Nilsson, Fredrik Elgh. Reactivated herpes simplex infection increases the risk of Alzheimer’s disease. Alzheimer’s & Dementia, 2014; DOI: 10.1016/j.jalz.2014.04.522

Source:  sciencedaily.com

Air pollution “can cause changes in the brain seen in autism and schizophrenia”

  • Male brains are more strongly affected by pollution than female brains
  • Pollution exposure could cause memory and learning problems in people
  • It causes ‘rampant’ inflammation throughout the brain

Early exposure to air pollution causes harmful changes in the brain seen in autism and schizophrenia, research has shown.

The findings in mice follow previous research linking traffic pollution and higher rates of autism in children.

As in humans, it was mostly male mice that were affected.

Besides suffering physical damage to their brains, they performed poorly in tests of short-term memory, learning ability and impulsivity.

Exposure to air pollution causes harmful changes in the brain seen in autism and schizophrenia

Exposure to air pollution causes harmful changes in the brain seen in autism and schizophrenia

In a series of experiments, scientists exposed mice to levels of air pollution typically found in medium-sized cities during the first two weeks after birth.

Mice examined 24 hours after their last exposure displayed evidence of ‘rampant’ inflammation throughout their brains.

Fluid-filled ventricle chambers on both sides of the brain were also enlarged to two or three times their normal size.

Lead researcher Professor Deborah Cory-Slechta, from the University of Rochester, U.S., said: ‘When we looked closely at the ventricles, we could see that the white matter that normally surrounds them hadn’t fully developed.

‘It appears that inflammation had damaged those brain cells and prevented that region of the brain from developing, and the ventricles simply expanded to fill the space.

‘Our findings add to the growing body of evidence that air pollution may play a role in autism, as well as in other neurodevelopmental disorders.’

Pollution has a more significant effect on the brains of boys than of girls - autism is also more common in boys

Pollution has a more significant effect on the brains of boys than of girls – autism is also more common in boys

The same defects were seen in other groups of mice 40 and 270 days after exposure, suggesting they were permanent.

Brains of all three groups of mice also had raised levels of the nerve message chemical glutamate.

Again, this is seen in humans with autism and schizophrenia.

The research, published in the journal Environmental Health Perspectives, focused on ultra-fine carbon particles of the type produced by factories and motor vehicles.

Being so small, the particles can travel deep into the lungs and become absorbed into the bloodstream.

Last year, a study published in the journal JAMA Psychiatry showed that children who spend the first year of life in areas highly polluted by traffic are three times more likely to develop autism.

Will a Nicotine Patch Make You Smarter?

Back home in New Jersey, I read through dozens of human and animal studies published over the past five years showing that nicotine—freed of its noxious host, tobacco, and delivered instead by chewing gum or transdermal patch—may prove to be a weirdly, improbably effective cognitive enhancer and treatment for relieving or preventing a variety of neurological disorders, including Parkinson’s, mild cognitive impairment, ADHD, Tourette’s, and schizophrenia. Plus it has long been associated with weight loss. With few known safety risks.

Nicotine? Yes, nicotine.

Nicotine PatchIn fact—and this is where the irony gets mad deep—the one purpose for which nicotine patches have proven futile is the very same one for which they are approved by the Food and Drug Administration, sold by pharmacies over the counter, bought by consumers, and covered by many state Medicaid programs: quitting smoking. In January 2012, a six-year follow-up study of 787 adults who had recently quit smoking found that those who used nicotine replacement therapy in the form of a patch, gum, inhaler, or nasal spray had the same long-term relapse rate as those who did not use the products. Heavy smokers who tried to quit without the benefit of counseling were actually twice as likely to relapse if they used a nicotine replacement product.

“I understand that smoking is bad,” said Maryka Quik, director of the Neurodegenerative Diseases Program at SRI International, a nonprofit research institute based in California’s Silicon Valley. “My father died of lung cancer. I totally get it.”

Yet for years Quik has endured the skepticism and downright hostility of many of her fellow neuroscientists as she has published some three dozen studies revealing the actions of nicotine within the mammalian brain.

“The whole problem with nicotine is that it happens to be found in cigarettes,” she told me. “People can’t disassociate the two in their mind, nicotine and smoking. It’s not the general public that annoys me, it’s the scientists. When I tell them about the studies, they should say, ‘Wow.’ But they say, ‘Oh well, that might be true, but I don’t see the point.’ It’s not even ignorance. It’s their preconceived ideas and inflexibility.”

I met Quik at the annual meeting of the Society for Neuroscience held in Washington, D.C. Amid thousands of studies presented in a cavernous exhibition hall, the title of hers jumped out: “Nicotine Reduces L-dopa-Induced Dyskinesias by Acting at 2 Nicotinic Receptors.”

“A huge literature says that smoking protects against Parkinson’s,”she said. “It started as a chance observation, which is frequently the most interesting kind.”

The first hint of nicotine’s possible benefits, I learned, came from a study published in 1966 by Harold Kahn, an epidemiologist at the National Institutes of Health. Using health-insurance data on 293,658 veterans who had served in the U.S. military between 1917 and 1940, he found the kinds of associations between smoking and mortality that even by the mid-1960s had become well known. At any given age, cigarette smokers were eleven times more likely to have died of lung cancer as were nonsmokers and twelve times more likely to have died of emphysema. Cancers of the mouth, pharynx, esophagus, larynx—blah, blah, blah. But amid the lineup of usual sus­pects, one oddball jumped out: Parkinson’s disease. Strangely enough, death due to the neurodegenerative disorder, marked by loss of dopamine-producing neurons in the midbrain, occurred at least three times more often in nonsmokers than in smokers.

What was it about tobacco that ravages the heart, lungs, teeth, and skin but somehow guards against a disease of the brain? Over the course of the 1970s, neuroscientists like Quik learned that the nicotine molecule fits into receptors for the neurotransmitter acetylcholine like a key into a lock. By managing to slip through doors marked “Acetylcholine Only,” nicotine revealed a special family of acetylcholine receptors hitherto unknown.

And what a family. Nicotinic receptors turn out to have the extraordinary capacity to moderate other families of receptors, quieting or amplifying their functioning. According to psychopharmacologist Paul Newhouse, director of the Center for Cognitive Medicine at Vanderbilt University School of Medicine in Nashville, “Nicotinic receptors in the brain appear to work by regulating other receptor systems. If you’re sleepy, nicotine tends to make you more alert. If you’re anxious, it tends to calm you.”

The primary neurotransmitter that nicotine nudges is dopamine, which plays an important role in modulating attention, reward-seeking behaviors, drug addictions, and movement. And therein lies the answer to the mystery of why nicotine could prevent a movement disorder like Parkinson’s disease, due to its effects on dopamine.

To put the drug to the test, Quik treated rhesus monkeys with Parkinson’s with nicotine. After eight weeks, she reported in a landmark 2007 paper in the Annals of Neurology, the monkeys had half as many tremors and tics. Even more remarkably, in monkeys already receiving L-dopa, the standard drug for Parkinson’s, nicotine reduced their dyskinesias by an additional one-third. Studies of nicotine in humans with Parkinson’s are now under way, supported by the Michael J. Fox Foundation.

Other research suggests the drug may protect against the early stages of Alzheimer’s disease. A study involving sixty-seven people with mild cognitive impairment, in which memory is slightly impaired but decision-making and other cognitive abilities remain within normal levels, found “significant nicotine-associated improvements in attention, memory, and psychomotor speed,” with excellent safety and tolerability.

“What we saw was consistent with prior studies showing that nicotinic stimulation in the short run can improve memory, attention, and speed,” said Newhouse, who led the study.

As Newhouse sees it, “Obviously the results of small studies often aren’t replicated in larger studies, but at least nicotine certainly looks safe. And we’ve seen absolutely no withdrawal symptoms. There doesn’t seem to be any abuse liability whatsoever in taking nicotine by patch in nonsmokers. That’s reassuring.”

That’s not reassuring: it’s totally bizarre. Nicotine has routinely been described in news accounts as among the most addictive substances known. As the New York Times Magazine famously put it in 1987, “nicotine is as addictive as heroin, cocaine or amphetamines, and for most people more addictive than alcohol.”

But that’s just wrong. Tobacco may well be as addictive as heroin, crack, alcohol, and Cherry Garcia combined into one giant crazy sundae. But as laboratory scientists know, getting mice or other animals hooked on nicotine all by its lonesome is dauntingly difficult. As a 2007 paper in the journal Neuropharmacology put it, “Tobacco use has one of the highest rates of addiction of any abused drug. Paradoxically, in animal models, nicotine appears to be a weak reinforcer.”

That same study, like many others, found that other ingredients in tobacco smoke are necessary to amp up nicotine’s addictiveness. Those other chemical ingredients—things like acetaldehyde, anabasine, nornicotine, anatabine, cotinine, and myosmine—help to keep people hooked on tobacco. On its own, nicotine isn’t enough.

But what about nicotine as a cognitive enhancer for people without Alzheimer’s, Parkinson’s or any other brain disease?

“To my knowledge, nicotine is the most reliable cognitive enhancer that we currently have, bizarrely,” said Jennifer Rusted, professor of experimental psychology at Sussex University in Britain when we spoke. “The cognitive-enhancing effects of nicotine in a normal population are more robust than you get with any other agent. With Provigil, for instance, the evidence for cognitive benefits is nowhere near as strong as it is for nicotine.”

In the past six years, researchers from Spain, Germany, Switzer­land, and Denmark—not to mention Paul Newhouse in Vermont—have published over a dozen studies showing that in animals and humans alike, nicotine administration temporarily improves visual attention and working memory. In Britain, Rusted has published a series of studies showing that nicotine increases something called prospective memory, the ability to remember and implement a prior intention. When your mother asks you to pick up a jar of pickles while you’re at the grocery store, she’s saddling you with a prospective memory challenge.

“We’ve demonstrated that you can get an effect from nicotine on prospective memory,” Rusted said. “It’s a small effect, maybe a 15 percent improvement. It’s not something that’s going to have a massive impact in a healthy young individual. But we think it’s doing it by allowing you to redeploy your attention more rapidly, switching from an ongoing task to the target. It’s a matter of cognitive control, shutting out irrelevant stimuli and improving your attention on what’s relevant.”

Of course, all the physicians and neuroscientists I interviewed were unanimous in discouraging people from using a nicotine patch for anything other than its FDA-approved purpose, as an aid to quit smoking, until large studies involving hundreds of people establish the true range of benefits and risks (even though studies find it doesn’t work for that purpose). But with so many studies showing that it’s safe, and so many suggesting it might well be the most effective cognitive enhancer now on the market, I decided to ignore not only their advice but the advice of my personal physician.

I added a nicotine patch to my list [of things to try to become smarter.]

Source:  Scientific American

Ketogenic Diets and Bipolar Disorder: New Case Studies

Researching the viability of ketogenic diets for therapeutic usage was one of the original interests that launched this blog. And while there is growing data for brain cancers and even a Cochran review for the use of ketogenic diets in epilepsy, the bipolar story has always been theoretical.

Ketogenic (very low carbohydrate and low protein) diets should work a bit like the mood stabilizer depakote in regulating unstable moods in bipolar disorder, making them an interesting option, should the research pan out. I explore the research and details in this post:

A Dietary Treatment for Bipolar Disorder?

But, as I stated in that article, there were no randomized controlled trials, not even a pilot trial, and the only two case studies I had unearthed had one guy getting psychotic on Atkins induction and another one where a hospitalized bipolar woman showed no benefit (but despite reported enthusiasm and being in an inpatient unit where her food was supposedly entirely controlled, she never achieved ketosis).

But the other day PubMed emailed me a new paper with links to the following article: The ketogenic diet for type II bipolar disorder. Thanks to the good Dr. Eades I was able to see the full text without getting a librarian to request it for me.

And here we have not one, but two rather well documented cases of bipolar II disorder in women, beginning in youth with some hypomania, in one person predictable seasonal depressions in the summer and a bit of mania in the spring. Both women had bad responses (such as suicide attempts and suicidal thoughts) to antidepressant trials and one gained weight on quetiapine. They were tried on lamotrigine, an anticonvulsant and mood stabilizer, with okay results (one woman was finally able to maintain a job and be functional). One tried a ketogenic diet to help with some irritable bowel symptoms, the other just wanted to try the diet. One woman ate raw cream, grassfed beef, organic pork, free range chicken, and seafood. The other ate mostly chicken, fish, and coconut oil with 2-3 cups of vegetables a day. Both monitored their urine with ketostix or Ketone Care Test Strips most days for several months, achieving mild to moderate ketosis on most days. Both women eventually discontinued the lamotrigine and reported better symptom control with the diet than with medication.

One woman described her irritability going away and a sense of calm. Also “having my head screwed on straight–well, it’s definitely worth giving up pie.” She said her symptoms seemed better with a ketone level of 15mg/dl vs 5 mg/dl in the urine. The other woman noted that if she remained gluten-free, she felt much better, even though she had never been diagnosed with celiac disease.

Neither woman had any adverse consequences and they remained stable on the diet for 2-3 years at the time the paper was published.

The paper details how a slight acidosis achieved with a ketogenic diet results in decreased intracellular sodium accumulation, which is the mechanism by which all anticonvulsants which are also mood stabilizers appear to work. In addition, the paper details some possible pitfalls of a ketogenic diet, such as difficulty maintaining it in a world of twinkies and coca-cola, and the risk of kidney stones. The author recommends >2.5 liters a day of fluids and a potassium citrate supplement to alkinilize the urine, which is done routinely in pediatric clinics where ketogenic diets are used for seizures, but may not be be necessary in adults. There is a long-term review of the ketogenic diets in kids (though I’m not a fan of the ingredients in some of the formulas used for tube-feeding some of these kids – soybean oil, soybean oil and more soybean oil) talking about complications over 6 years. Since these kids were often very ill with many other debilitating conditions, it is hard to attribute the complications (sepsis, cardiomyopathy, lipid pneumonia) to the diet itself.

Lipids were measured in one woman from a vegetarian to an omnivorous to a ketogenic diet. As is expected her trigs dropped and her LDL and HDL went up on the ketogenic diet. Total cholesterol to HDL ratio (the best cheap test I know of relating to total LDL particle number, with a lower ratio being better) on the vegetarian diet was 4.47, 3.78 on the omnivorous diet, and 3.74 on the ketogenic diet.

All in all, the paper is a nice illustration of two motivated patients achieving remission of their bipolar symptoms (which they had dealt with for decades) with a free-living ketogenic diet (and some other supplements, though each woman took different ones, for example, probiotics and omega 3). Two anecdotes isn’t a huge amount of data, but it is intriguing, and I would say the time for a randomized controlled trial of ketogenic diets in bipolar disorder is way overdue.

(Final note as I was in a bit of a hurry when I wrote the post at first… I did want to say there is a *lot* about these case study diets that could be therapeutic. No processed food, no sugar, lots of nutrients, lots of omega 3, low in gluten or gluten-free, likely low in histamine. The tracking of the ketones and one women’s experience that the 15mg/dl ketone level felt more calming to her along with the sensible biologic mechanism makes the ketosis part plausible, but it is important to note these other possible factors).

Source: primal docs