The Significance of Selenium

Selenium is a trace element a Swedish chemist, Baron Jöns Jacob Berzelius, discovered almost 200 years ago. Today, modern scientists recognize it as “an essential mineral of pivotal importance for human health,” with anti-inflammatory, antiviral and anti-cancer potential.1

This mineral is also a powerful antioxidant, which plays itself out in many ways in regard to your health. You need only a little, though, to help keep your immune system and other functions humming along in proper order.

As much as your body requires selenium, taking the proper amount is crucial, because too much (such as 400 micrograms [mcg] daily) is associated with an increased risk of diabetes.2

However, unless you’re taking a supplement, it’s not likely you’ll overdose on selenium through the foods you eat. In fact, most people have trouble getting what they need, and as many as 1 billion people worldwide have a selenium deficiency.

Your chance of having a selenium deficiency is higher if you smoke cigarettes, take birth control pills, drink alcohol or have a condition that keeps you from absorbing the nutrients you need through the foods you eat.

Free Radicals: The ‘Bad Guys’ You Don’t Want Lurking in Your Body

As previously mentioned, one of the most important aspects of selenium is that it functions as a free-radical-zapping antioxidant. What does that mean, exactly?

When you take the word apart, “anti” is something you’re against and the word or phrase that follows it is the “bad guy.” In this case, what you’re against is oxidation because it can cause oxidative stress, which in turn can lead to tissue and organ damage. According to News-Medical:

“Oxidative stress is essentially an imbalance between the production of free radicals and the ability of the body to counteract or detoxify their harmful effects through neutralization by antioxidants”3

While “free radicals” may be another murky term, in short, free radicals and other assorted reactive oxygen species (ROS) are caused by either normal, internal metabolic processes or via outside influences such as nicotine and X-rays, or exposure to harmful chemicals like those used to kill mosquitoes, germs in your bathroom or weeds around your patio. One study explains:

“Free radicals, reactive oxygen species (ROS) and reactive nitrogen species are generated by our body by various endogenous systems, exposure to different physiochemical conditions or pathological states. A balance between free radicals and antioxidants is necessary for proper physiological function.

If free radicals overwhelm the body’s ability to regulate them, a condition known as oxidative stress ensues. Free radicals thus adversely alter lipids, proteins and DNA and trigger a number of human diseases. Hence application of external source of antioxidants can assist in coping (with) oxidative stress.”4

It may be helpful to remember that free radicals can cause cell damage, and antioxidants fight free radicals.

Thyroid Function and the Role of Selenium

Your thyroid contains more selenium per gram of tissue than any other organ. One study explains:

“In 1957, studies investigating the requirements of nutrients in rodent diets revealed selenium (along with vitamin E) to be essential for prevention of liver necrosis. This led to the realization that selenium deficiency was responsible for a number of disorders observed previously …

(Selenium is) a contributing factor to Keshan disease in humans. Although toxicity at higher levels is still a serious problem, the importance of selenium as an essential micronutrient is now recognized.”5

Another study states that the value of selenium supplementation for people with autoimmune thyroid problems is becoming more understood and deficiency even appears to have an impact on the development of thyroid problems, possibly due to selenium’s ability to regulate the production of ROS and their metabolites.

In patients with Hashimoto’s disease, selenium supplementation “decreases anti-thyroid antibody levels and improves the ultrasound structure of the thyroid gland.”6 Further, studies for pregnant women regarding selenium say that supplementation significantly lowers the risk of postpartum thyroiditis.7

Selenium Strengths: Proper Amounts Cut Your Risk of Serious Disease

According to one meta-analysis:

“Selenium may play a beneficial role in multi-factorial illnesses with genetic and environmental linkages … Tissues particularly sensitive to changes in selenium supply include red blood cells, kidney and muscle.

The meta-analysis identified that for animal species selenium-enriched foods were more effective than selenomethionine at increasing (glutathione peroxidase) activity.”8

Immune Function

One of the most important functions of selenium is its ability to help your body fight disease. It raises your white blood cell count so you’re more able to resist infections.

An example is a study showing that selenium may help prevent a skin infection prevalent in people with lymphedema (swelling of the tissues in your arms and/or legs, usually as a result of chemotherapy or injury), and mycoplasma pneumonia, aka “walking” pneumonia.9

Cancer

In 2012, researchers reported that in areas of the world where selenium levels are naturally low, supplementing with selenium may be cancer protective.10 Study author and professor John Hesketh of Newcastle University, U.K., explained:

“The difficulty with selenium is that it’s a very narrow window between levels that are sub-optimal and those that would be considered toxic.

What our study shows is a possible link between higher levels of selenium and a decreased risk of colorectal cancer and suggests that increasing selenium intake may reduce the risk of this disease.”11

Heart Benefits

While it should be noted that some researchers say taking selenium supplements doesn’t appear to influence heart disease one way or the other or protect against heart attack, the University of Maryland Medical Center reported:

“Scientists know that low levels of selenium can contribute to heart failure, and being deficient in selenium seems to make atherosclerosis worse. Atherosclerosis, or hardening of the arteries, happens when plaque builds up in arteries, which can lead to heart attack and stroke.”12

Another study found that patients who took selenium supplements on a regular basis are “far less likely” to have another heart attack.13

Asthma

Asthma sufferers tend to have higher incidences of low selenium levels in their blood. Scientists found that diets containing high amounts of antioxidants are associated with lowered asthma prevalence in epidemiologic studies, as a report on accumulated data revealed:

“Accumulated data indicate that asthma is associated with reduced circulatory selenium (Se) … In the Se-supplemented group there were significant increases in serum Se

… Further, there was a significant clinical improvement in the Se-supplemented group, as compared with the placebo group.”14

Among 24 subjects with asthma, those who took supplements for 14 weeks had fewer symptoms than those taking a placebo, one study found. However, scientists agree that more studies are needed.15

Male infertility

Proteins found in sperm and involved in their formation are impacted by selenium and other antioxidants.

An interesting dichotomy, however, is that while studies show male infertility may be improved by the selenium in a man’s system, levels that are too high can inhibit the sperm’s ability to swim, according to the University of Maryland Medical Center.16 Another study concluded:

“Selenium-enriched probiotics or inorganic selenium supplementation gave better results than probiotics supplementation and may be used to improve animal and human male fertility compromised by hyperlipidemia or obesity.”17

HIV/AIDS

Most of the African continent is selenium deficient. Simultaneously, AIDS is the most common cause of death. News-Medical, examining diseases impacted by selenium, reported:

“Taken as a whole, the geographical evidence, therefore, strongly suggests that selenium is protective against HIV infection.

Such a relationship is not limited to this virus. A frequently fatal illness of the heart, known as Keshan disease, is widespread in the population of the low selenium belt that crosses China from northeast to southwest. Keshan disease occurs only in individuals who are both selenium deficient and infected by the coxsackievirus”18

While the highest death rates from AIDS affect several of the southwestern-most portions of the continent, such as Botswana, Uganda and Kenya, “the prevalence rate for HIV infection still hovers at an unusually low 0.5 percent among women attending antenatal clinics” in Dakar, the capital city of Senegal.

The difference, scientists say, is that Senegal is located on the far western coast of Africa, where the soil is enriched with trace elements of selenium, contrasting the eastern portion, where the soil is devoid of the selenium that might help make a difference in this regard.

A similar situation is taking place in Finland where, to combat heart disease, legislation was passed in 1984 ordering sodium selenite to be added to all fertilizers throughout the country. Perhaps as a result, the country’s HIV rates are half that of other Scandinavian countries.

Selenium From Food: Seafood, Mushrooms and Meat

The best selenium sources from food include salmon (although only wild-caught Alaskan salmon is recommended due to widespread pollution in other fish), free-range organic turkey, lamb and grass-fed organic beef. You can also find high amounts of selenium in Brazil nuts, sunflower seeds, onions and garlic and certain mushrooms.19 SFGate says:

“Mushrooms are one of the top vegetable sources for selenium. One cup of cooked shiitakes or white button mushrooms provides 19 micrograms of selenium, or 35 percent of the RDA. A more typical serving of ¼ cup provides less than 10 percent of the daily value.

A cup of cooked Lima or pinto beans averages 9 to 11 micrograms of the mineral, or about 15 to 20 percent of the RDA. Frozen cooked spinach, which is packed more tightly per cup than fresh cooked, provides 10 micrograms of selenium, or 18 percent of the RDA.”

It’s not just how much selenium is in your food, though, that determines how much you’re getting. It’s also about how much selenium is in the soil your food is grown in. Related factors include how much selenium was in the grass eaten by the cattle producing your grass-fed beef.

(Grass-fed beef, by the way, contains a healthy ratio between omega-6 and omega-3 fats. Naturally, you also want it to be free of hormones and antibiotics.)

mercola.com

 

The Ketogenic Diet – An Overview

A ketogenic diet is based on animal fat sources.

A ketogenic diet is based on animal fat sources.

Ketosis is an often misunderstood subject. Its presence is thought to be equal to starvation or a warning sign of something going wrong in your metabolism. But nothing could be farther from the truth, except if you are an ill-treated type 1 diabetic person.[1] Ketones – contrary to popular belief and myth – are a much needed and essential healing energy source in our cells that comes from the normal metabolism of fat.

The entire body uses ketones in a more safe and effective way that the energy source coming from carbohydrates – sugar AKA glucose. Our bodies will produce ketones if we eat a diet devoid of carbs or a low carb diet (less than 60 grams of carbs per day).[2] By eating a very low carb diet or no carbs at all (like a caveman) we become keto-adapted.

In fact, what is known today as the ketogenic diet was the number one treatment for epilepsy until Big Pharma arrived with its dangerous cocktails of anti-epileptic drugs. It took several decades before we heard again about this diet, thanks in part to a parent who demanded it for his 20-month-old boy with severe seizures. The boy’s father had to find out about the ketogenic diet in a library as it was never mentioned as an option by his neurologist. After only 4 days on the diet, his seizures stopped and never returned.[3] The Charlie Foundation was born after the kid’s name and his successful recovery, but nowadays the ketogenic diet is available to the entire world and it’s spreading by word of mouth thanks to its healing effects.

It is not only used as a healthy lifestyle, it is also used for conditions such as infantile spasms, epilepsy, autism, brain tumors, Alzheimer’s disease, Lou Gehrig’s disease, depression, stroke, head trauma, Parkinson’s disease, migraine, sleep disorders, schizophrenia, anxiety, ADHD, irritability, polycystic ovarian disease, irritable bowel syndrome, gastroesophageal reflux, obesity, cardiovascular disease, acne, type 2 diabetes, tremors, respiratory failure and virtually every neurological problem but also cancer, and conditions were tissues need to recover after a loss of oxygen.[4]

Our body organs and tissues work much better when they use ketones as a source of fuel, including the brain, heart and the core of our kidneys. If you ever had a chance to see a heart working in real time, you might have noticed the thick fatty tissue that surrounds it. In fact, heart surgeons get to see this every day. A happy beating heart is one that is surrounded by layers of healthy fat. Both the heart and the brain run at least 25% more efficiently on ketones than on blood sugar.

Ketones are the ideal fuel for our bodies unlike glucose – which is damaging, less stable, more excitatory and in fact shortens your life span. Ketones are non-glycating, which is to say, they don’t have a caramelizing aging effect on your body. A healthy ketosis also helps starve cancer cells as they are unable to use ketones for fuel, relying on glucose alone for their growth. [5] The energy producing factories of our cells – the mitochondria – work much better on a ketogenic diet as they are able to increase energy levels on a stable, long-burning, efficient, and steady way. Not only that, a ketogenic diet induces epigenetic changes[6] which increases the energetic output of our mitochondria, reduces the production of damaging free radicals, and favors the production of GABA – a major inhibitory brain chemical. GABA has an essential relaxing influence and its favored production by ketosis also reduces the toxic effects of excitatory pathways in our brains. Furthermore, recent data suggests that ketosis alleviates pain other than having an overall anti-inflammatory effect. [7]

The ketogenic diet acts on multiple levels at once, something that no drug has been able to mimic. This is because mitochondria is specifically designed to use fat for energy. When our mitochondria uses fat as an energetic source, its toxic load is decreased, expression of energy producing genes are increased, its energetic output is increased, and the load of inflammatory energetic-end-products is decreased.

The key of these miraculous healing effects relies in the fact that fat metabolism and its generation of ketone bodies (beta-hydroxybutyrate and acetoacetate) by the liver can only occur within the mitochondrion, leaving chemicals within the cell but outside the mitochondria readily available to stimulate powerful anti-inflammatory antioxidants.  The status of our mitochondria is the ultimate key for optimal health and while it is true that some of us might need extra support in the form of nutritional supplementation to heal these much needed energy factories, the diet still remains the ultimate key for a proper balance.

Our modern world’s staple energetic source is sugar which needs to be processed first in the cell soup before it can be passed into the energy factory of the cell- the mitochondrion. Energy sources from fat don’t require this processing; it goes directly into the mitochondria for energetic uses.  That is, it is more complicated to create energy out of sugar than out of fat. As Christian B. Allan, PhD and Wolfgang Lutz, MD said in their book Life Without Bread:

Carbohydrates are not required to obtain energy. Fat supplies more energy than a comparable amount of carbohydrate, and low-carbohydrate diets tend to make your system of producing energy more efficient. Furthermore, many organs prefer fat for energy.

The fact is you get MORE energy per molecule of fat than sugar. How many chronic and autoimmune diseases have an energy deficit component?  How about chronic fatigue?  Fibromyalgia?  Rheumatoid Arthritis?  Multiple Sclerosis? Cancer? Back to Allan and Lutz:

Mitochondria are the power plants of the cell. Because they produce most of the energy in the body, the amount of energy available is based on how well the mitochondria are working. Whenever you think of energy, think of all those mitochondria churning out ATP to make the entire body function correctly. The amount of mitochondria in each cell varies, but up to 50 percent of the total cell volume can be mitochondria. When you get tired, don’t just assume you need more carbohydrates; instead, think in terms of how you can maximize your mitochondrial energy production…

If you could shrink to a small enough size to get inside the mitochondria, what would you discover? The first thing you’d learn is that the mitochondria are primarily designed to use fat for energy!

In short, let fat be thy medicine and medicine be thy fat!

You will think that with all of this information we would see ketogenic diets recommended right and left by our health care providers, but alas, that is not the case. Mainstream nutritionists recommend carbohydrates AKA sugar as the main staple of our diets. The problem with this (and there are several of them) is that in the presence of a high carb diet we are unable to produce ketones from the metabolism of fats, thus, depriving ours bodies from much healing ketone production.  The fact that we live in a world which uses glucose as a primary fuel means that we eat a very non healing food in more ways than one.

I have been doing the low carb diet for about a week and a half now and I must say, I am really starting to feel amazing!!!  The first few days my head hurt, I felt lethargic, and my legs felt so heavy. But after I got past that, I have so much energy. I don’t get tired anymore around 3pm. The best part is, I am not constantly thinking and obsessing about food. I feel a real sense of inner calm. My skin looks better, my hair looks better too. I have been having bacon and eggs for breakfast, a pork chop or other piece of meat for lunch, and usually some pork and sometimes some green beans for dinner. I have also lost some weight!  Woo hoo!!! -Angela, United States. Sott.net forum.

 

We have been on a ketogenic diet for nearly three million years and it has made us human. It was the lifestyle in which our brains got nurtured and evolved. But not anymore, unless we all make an effort to reclaim this lost wisdom. Nowadays the human brain is not only shrinking, but brain atrophy is the norm as we age and get plagued with diseases such as Alzheimer’s disease, Parkinson’s disease, senile dementia and so forth.

In the mean time new research is starting to elucidate the key role of our mitochondria in the regulation of the cell cycle – the vital process by which a single celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. In the complicated and highly choreographed events surrounding cell-cycle progression, mitochondria are not simple bystanders merely producing energy but instead are full-fledged participants.[8] Given the significant amount of energy needed to make all the nutrients required for cell division, it makes sense that some coordination existed. This long ignored and overlooked connection between the mitochondria and the cell cycle is something that is worthy of considerable more attention as we understand the role of diet in our bodies. We’ll have to take a closer look to this subject of ketosis, as it really holds the key to unlock our transformational pathways that will lead us to an outstanding healthy living.

Mitochondrial Dysfunction

Mitochondria are best known as the powerhouses of our cells since they produce the cell’s energy. But they also lead the genetic orchestra which regulates how every cell ages, divides, and dies. They help dictate which genes are switched on or off in every single cell of our organism. They also provide the fuel needed to make new brain connections, repair and regenerate our bodies.

Whether we are housewives, sportsmen or labor people, energy is a topic that concerns us all, every day and in every way. Our well being, behavior and ability to perform the tasks in front of us to do is our individual measure of energy. But how we derive energy from the foods that we eat?

There are many man-made myths surrounding energy production in the body and which foods supply energy. Mainstream science says that carbohydrates are what mitochondria use as fuel for energy production. This process is called oxidative metabolism because oxygen is consumed in the process. The energy produced by mitochondria is stored in a chemical “battery”, a unique molecule called adenosine triphosphate (ATP). Energy-packed ATP can then be transported throughout the cell, releasing energy on demand of specific enzymes. In addition to the fuel they produce, mitochondria also create a by-product related to oxygen called reactive oxygen species (ROS), commonly known as free radicals. But what we are not told is that mitochondria were specifically designed to use fat for energy, not carbohydrate.

Source: Christian B. Allan, PhD and Wolfgang Lutz, MD, Life Without Bread.There are several very complicated steps in making ATP within mitochondria, but a look at 5 major parts of ATP production will be all that you need to know in order to understand how energy is created within our mitochondria and why fats are the key to optimize their function. Don’t get focused on specific names, just try to see the whole picture.Step 1 – Transportation of Food-Based Fuel Source into the MitochondriaFuel must first get into the mitochondria where all the action happens. Fuel can come from carbs or it can come from fats. Fatty acids are the chemical name for fat, and medium and large sized fatty acids get into the mitochondria completely intact with the help of L-carnitine. Think of L-carnitine as a subway train that transports fatty acids into the mitochondria. L-carnitine (from the Greek word carnis means meat or flesh) is chiefly found in animal products.Fuel coming from carbs needs to get broken down first outside the mitochondria and the product of this breakdown (pyruvate) is the one who gets transported inside the mitochondria, or it can be used to produce energy in a very inefficient way outside the mitochondria through anaerobic metabolism which produces ATP when oxygen is not present.

Step 2 – Fuel is Converted into Acetyl-CoA

When pyruvate – the product of breaking down carbs – enters the mitochondria, it first must be converted into acetyl-CoA by an enzymatic reaction.

Fatty acids that are already inside the mitochondria are broken down directly into acetyl-CoA in what is called beta-oxidation.

Acetyl-CoA is the starting point of the next step in the production of ATP inside the mitochondria.

Step 3 – Oxidation of Acetyl-CoA and the Krebs Cycle

The Krebs cycle (AKA tricarboxylic acid cycle or citric acid cycle) is the one that oxidizes the acetyl-CoA, removing thus electrons from acetyl-CoA and producing carbon dioxide as a by-product in the presence of oxygen inside the mitochondria.

Step 4 – Electrons Are Transported Through the Respiratory Chain

The electrons obtained from acetyl-CoA – which ultimately came from carbs or fats – are shuttled through many molecules as part of the electron transport chain inside the mitochondria. Some molecules are proteins, others are cofactors molecules. One of these cofactors is an important substance found mainly in animal foods and it is called coenzyme Q-10. Without it, mitochondrial energy production would be minimal. This is the same coenzyme Q10 that statins drug block producing crippling effects on people’s health. Step 4 is also where water is produced when oxygen accepts the electrons.

Step 5 – Oxidative phosphorylation

As electrons travel down the electron transport chain, they cause electrical fluctuations (or chemical gradients) between the inner and outer membrane in the mitochondria. These chemical gradients are the driving forces that produce ATP in what is called oxidative phosphorylation. Then the ATP is transported outside the mitochondria for the cell to use as energy for any of its thousands of biochemical reactions.

But why is fat better than carbs?

If there were no mitochondria, then fat metabolism for energy would be limited and not very efficient. But nature provided us during our evolution with mitochondria that specifically uses fat for energy. Fat is the fueled that animals use to travel great distances, hunt, work, and play since fat gives more packed-energy ATPs than carbs. Biochemically, it makes sense that if we are higher mammals who have mitochondria, then we need to eat fat.  Whereas carb metabolism yields 36 ATP molecules from a glucose molecule, a fat metabolism yields 48 ATP molecules from a fatty acid molecule inside the mitochondria. Fat supplies more energy for the same amount of food compared to carbs. But not only that, the burning of fat by the mitochondria – beta oxidation – produces ketone bodies that stabilizes overexcitation and oxidative stress in the brain related to all its diseases, it also causes epigenetic changes that produce healthy and energetic mitochondria and decreasing the overproduction of damaging and inflammatory free radicals among many other things!

 

Mitochondria regulate cellular suicide, AKA apoptosis, so that old and dysfunctional cells which need to die will do so, leaving space for new ones to come into the scene. But when mitochondria function becomes impaired and send signals that tell normal cells to die, things go wrong. For instance, the destruction of brain cells leads to every single neurodegenerative condition known including Alzheimer’s disease, Parkinson’s disease and so forth. Mitochondrial dysfunction has wide-ranging implications, as the health of the mitochondria intimately affects every single cell, tissue and organ within your body.

The catalysts for this destruction is usually uncontrolled free radical production which cause oxidative damage to tissues, fat, proteins, DNA; causing them to rust. This damage, called oxidative stress, is at the basis of oxidized cholesterol, stiff arteries (rusty pipes) and brain damage. Oxidative stress is a key player in dementia as well as autism.

We produce our own anti-oxidants to keep a check on free radical production, but these systems are easily overwhelmed by a toxic environment and a high carb diet, in other words, by today’s lifestyle and diet.

Mitochondria also have interesting characteristics which differentiate them from all other structural parts of our cells. For instance, they have their own DNA (referred as mtDNA) which is separate from the widely known DNA in the nucleus (referred as n-DNA),. Mitochondrial DNA comes for the most part from the mother line, which is why mitochondria is also considered as your feminine life force. This mtDNA is arranged in a ring configuration and it lacks a protective protein surrounding, leaving its genetic code vulnerable to free radical damage. If you don’t eat enough animal fats, you can’t build a functional mitochondrial membrane which will keep it healthy and prevent them from dying.

If you have any kind of inflammation from anywhere in your body, you damage your mitochondria. The loss of function or death of mitochondria is present in pretty much every disease. Dietary and environmental factors lead to oxidative stress and thus to mitochondrial injury as the final common pathway of diseases or illnesses.

Autism, ADHD, Parkinson’s, depression, anxiety, bipolar disease, brain aging are all linked with mitochondrial dysfunction from oxidative stress. Mitochondrial dysfunction contributes to congestive heart failure, type 2 diabetes, autoimmune disorders, aging, cancer, and other diseases.

Whereas the nDNA provides the information your cells need to code for proteins that control metabolism, repair, and structural integrity of your body, it is the mtDNA which directs the production and utilization of your life energy. A cell can still commit suicide (apoptosis) even when it has no nucleus nor nDNA.

Because of their energetic role, the cells of tissues and organs which require more energy to function are richer in mitochondrial numbers. Cells in our brains, muscles, heart, kidney and liver contain thousands of mitochondria, comprising up to 40% of the cell’s mass. According to Prof. Enzo Nisoli, a human adult possesses more than ten million billion mitochondria, making up a full 10% of the total body weight.[9] Each cell contains hundreds of mitochondria and thousands of mtDNA.

Since mtDNA is less protected than nDNA because it has no “protein” coating (histones), it is exquisitely vulnerable to injury by destabilizing molecules such as neurotoxic pesticides, herbicides, excitotoxins, heavy metals and volatile chemicals among others. This tips off the balance of free radical production to the extreme which then leads to oxidative stress damaging our mitochondria and its DNA. As a result we get overexcitation of cells and inflammation which is at the root of Parkinson’s disease and other diseases, but also mood problems and behavior problems.

Enough energy means a happy and healthy life. It also reflects in our brains with focused and sharp thinking. Lack of energy means mood problems, dementia, and slowed mental function among others. Mitochondria are intricately linked to the ability of the prefrontal cortex –our brain’s captain- to come fully online. Brain cells are loaded in mitochondria that produce the necessary energy to learn and memorize, and fire neurons harmoniously.

The sirtuin family of genes works by protecting and improving the health and function of your mitochondria.[10] They are positively influenced by a diet that is non-glycating, i.e. a low carb diet as opposed to a high carb diet which induces mitochondrial dysfunction and formation of reactive oxygen species.

Another thing that contributes to mitochondrial dysfunction is latent viral infection such as the ones of the herpes family. As I mentioned in On Viral “Junk” DNA, a DNA Enhancing Ketogenic Diet, and Cometary Kicks, most, if not all of your “junk” DNA has viral-like properties. If a pathogenic virus takes hold of our DNA or RNA, it could lead to disease or cancer.

Herpes simplex virus is a widespread human pathogen and it goes right after our mitochondrial DNA. Herpes simplex virus establishes its latency in sensory neurons, a type of cell that is highly sensitive to the pathological effects of mt DNA damage.[11] A latent viral infection might be driving the brain cell loss in neurodegenerative diseases such as Alzheimer’s disease.[12] As I speculated in Heart attacks, CFS, herpes virus infection and the vagus nerve , a latent herpes virus infection might drive more diseases than we would like to admit.

Members of the herpes virus family (i.e. cytomegalovirus and Epstein-Barr virus which most people have as latent infections!), can go after our mitochondrial DNA, causing neurodegenerative diseases by mitochondrial dysfunction. But a ketogenic diet is the one thing that would help stabilize mtDNA since mitochondria runs the best on fat fuel. As it happens, Alzheimer’s disease is the one condition where a ketogenic diet has its most potential healing effect.[4]

The role of mitochondrial dysfunction in our “modern” age maladies is a staggering one. Optimal energetic sources are essential if we are to heal from chronic ailments. It is our mitochondria which lies at the interface between the fuel from foods that come from our environment and our bodies’ energy demands. And it is a metabolism based on fat fuel, a ketone metabolism, the one which signals epigenetic changes that maximizes energetic output within our mitochondria and help us heal.

I am incredulous at how my body is responding.  I think I am totally carb intolerant.  I’ve struggled with extreme fatigue/exhaustion for so many years, even with improved sleep in a dark room that I can’t tell you how wonderful it is to wake up in the morning, get out of bed and not long to crawl back in, going through the day by will mostly.  Also chronic long-standing intestinal issues are finally resolving.  A couple of people at work have made comments to the effect that I’m a “different woman”, calmer, no more hyperness under pressure, stress seems to roll off of my back as well.  I’ve lost a little weight and although I don’t weigh myself, my clothes are definitely looser.  I’ve had the round middle for so many years I was resigned to struggling to bend over to pull my shoes on!  -Bluefyre, 56 years old, United States. Sott.net forum

 

Ketosis – Closer Look

The presence of ketones in the blood and urine, a condition known as ketosis, has always been regarded as a negative situation, related to starvation. While it is true that ketones are produced during fasting, ketones are also produced in times of plenty, but not plenty of carbohydrates since a carb metabolism suppresses ketosis. In the absence of most carbs in the diet, ketones will form from fat to supply for energy. This is true even if lots of fats and enough protein are eaten, something that is hardly a starvation condition.

As we already saw, a ketogenic diet has been proved useful in a number of diseases, especially neurological ones. Strictly speaking, a ketogenic diet is a high fat diet in which carbohydrates are either completely eliminated or nearly eliminated so that the body has the very bare minimum sources of glucose. That makes fats (fatty acids) a mandatory energetic fuel source for both the brain and other organs and tissues. If you are carb intake is high, you’ll end up storing both the fat and the carbs in your fat tissue thanks to the hormone insulin. A ketogenic diet is not a high protein diet, which as it happens, can also stimulate insulin. It is basically a diet where you rely primarily on animal foods and especially their fats.

I recently had my annual blood work done (cholesterol, etc.) During the review, my doctor said that everything looked great! He then encouraged me to continue on my great ‘low fat, high fruit and veggie diet’ that I must be following! I just smiled. Next visit I’m going to tell him about my real ‘diet’. Lol  -1984, United States. Sott.net forum.

 

Among the by-products of fat burning metabolism are the so called ketone bodies – acetoacetate, β-hydroxybutyrate and acetone – which are produced for the most part by the liver. When our bodies are running primarily on fats, large amounts of acetyl-CoA are produced which exceed the capacity of the Krebs cycle, leading to the making of these three ketone bodies within liver mitochondria. Our levels of ketone bodies in our blood go up and the brain readily uses them for energetic purposes. Ketone bodies cross the blood brain barrier very readily. Their solubility also makes them easily transportable by the blood to other organs and tissues. When ketone bodies are used as energy, they release acetyl-CoA which then goes to the Krebs cycle again to produce energy.

In children who were treated with the ketogenic diet to treat their epilepsy, it was seen that they become seizure-free even long after the diet ended, meaning that not only did the diet proved to be protective, but also it modified the activity of the disease , something that no drug has been able to do.[13] In Alzheimer’s disease, as levels of ketone bodies rise, memory improves. People’s starved brains finally receive the much needed fats they need! In fact, every single neurological disease is improved on the ketogenic diet.

The benefits of a ketogenic diet can be seen as fast as one week, developing gradually over a period of 3 weeks. There are several changes in gene expression involving metabolism, growth, development, and homeostasis among others.

The hippocampus is a region in your brain that is very vulnerable to stress which makes it lose its brain cells. The hippocampus has to do with memory, learning, and emotion. As it happens, a ketogenic diet promotes the codification of genes which creates mitochondria in the hippocampus, making more energy available. A larger mitochondrial load and more energy means more reserve to withstand much more stress.[14]

In some animal models, there is a 50% increase in the total number of mitochondria in the hippocampus, resulting in more brain ATP.[15] Other animal studies show how communication between brain cells in the hippocampus would remain smooth for 60% longer when exposed to a stressful stimulus compared to their counterparts who didn’t had a ketogenic diet.[16] This is very important since too much stress can damage the hippocampus and its capacity to retrieve information, making you “absent-minded” or “brain-scattered”, as well as affecting the ability of your prefrontal cortex to think and manage behavior.

A ketogenic diet also increases levels of the calming neurotransmitter – GABA which then serves to calm down the overexcitation which is at the base of major neurodegenerative diseases, but also anxiety and other mood problems. A ketogenic diet also increases antioxidant pathways that level the excess production of free radicals from a toxic environment. It also enhances anti-inflammatory pathways.

Ketosis also cleans our cells from proteins that act like “debris” and which contribute to aging by disrupting a proper functioning of the cell.[17] It basically does this by what is known as autophagy which preserves the health of cells and tissues by replacing outdated and damaged cellular components with fresh ones. This prevents degenerative diseases, aging, cancer, and protects you against microbial infections.A ketogenic diet not only rejuvenates you, it also makes a person much less susceptible to viruses and bacterial infections.[18] This is very relevant due to the increasing number of weird viral and bacterial infections that seem to be incoming from our upper atmosphere[19] (for more information see New Light on the Black Death: The Viral and Cosmic Connection), or due to high levels of radiation that creates more pathogenic strains (see Detoxify or Die: Natural Radiation Protection Therapies for Coping With the Fallout of the Fukushima Nuclear Meltdown). Either or, we are more vulnerable than ever due to the state of our mitochondria. But we can prepare for the worst with ketosis.

Ketone-enhanced autophagy is very important because autophagy can target viruses and bacteria that grow inside cells which are very problematical.[20] Intracellular viruses and bacteria can lead to severe mitochondrial dysfunction and ketosis remains by far our best chance against them.

fig 1 ket rev.pptxKetone bodies production through intermittent fasting and the ketogenic diet is the most promising treatment for mitochondrial dysfunction.[21] The longevity benefits seen caloric restriction research is due to the fact that our bodies shift to a fat burning metabolism within our mitochondria. With a ketogenic diet, we go into a fat burning metabolism without restricting our caloric intake.

Ketosis deals effectively with all the problems of a diet rich in carbs – the one recommended by mainstream science: anxiety, food cravings, irritability, tremors, and mood problems among others. It is a crime to discourage the consumption of a high fat diet considering that a ketogenic diet shrinks tumors on human and animal models, and enhances our brain’s resiliency against stress and toxicity.

In addition to increasing the production of our body’s natural valium – GABA – the increased production of acetyl-CoA generated from the ketone bodies also drives the Krebs cycle to increase mitochondrial NADH (reduced nicotinamide adenine nucleotide) which our body uses in over 450 vital biochemical reactions – including the cell signaling and assisting of the ongoing DNA repair. Because the ketone body beta-hydroxybutyrate is more energy rich than pyruvate, it produces more ATP. Ketosis also enhances the production of important anti-oxidants that deal with toxic elements from our environments, including glutathione.

Mitochondria from the hippocampus of ketogenic diet-fed animals are also resistant to mtDNA damage and are much less likely to commit cell suicide –apoptosis- at inappropriate times.

As Douglas C. Wallace, PhD, Director of the Center for Mitochondrial and Epigenomic Medicine says, “the ketogenic diet may act at multiple levels: It may decrease excitatory neuronal activity, increase the expression of bioenergetic genes, increase mitochondrial biogenesis and oxidative energy production, and increase mitochondrial NADPH production, thus decreasing mitochondrial oxidative stress.”[21]

Keto-adaptation results in marked changes in how we construct and maintain optimum membrane (“mem-brain”) composition, not only because of the healthy fats we provide through the diet, but also because of less free radical production and inflammatory mediators, along with more production of anti-oxidants. It is really the ideal balanced state.

Moreover, you might want to keep in mind this excerpt from Human Brain Evolution: The Influence of Freshwater and Marine Food Resources[22]:

There are two key advantages to having ketone bodies as the main alternative fuel to glucose for the human brain. First, humans normally have significant body fat stores, so there is an abundant supply of fatty acids to make ketones. Second, using ketones to meet part of the brain’s energy requirement when food availability is intermittent frees up some glucose for other uses and greatly reduces both the risk of detrimental muscle breakdown during glucose synthesis, as well as compromised function of other cells dependent on glucose, that is, red blood cells. One interesting attribute of ketone uptake by the brain is that it is four to five times faster in newborns and infants than in adults. Hence, in a sense, the efficient use of ketones by the infant brain means that it arguably has a better fuel reserve than the adult brain. Although the role of ketones as a fuel reserve is important, in infants, they are more than just a reserve brain fuel – they are also the main substrate for brain lipid synthesis.

I have hypothesized that evolution of a greater capacity to make ketones coevolved with human brain expansion. This increasing capacity was directly linked to evolving fatty acid reserves in body fat stores during fetal and neonatal development. To both expand brain size and increase its sophistication so remarkably would have required a reliable and copious energy supply for a very long period of time, probably at least a million, if not two million, years. Initially, and up to a point, the energy needs of a somewhat larger hominin brain could be met by glucose and short – term glucose reserves such as glycogen and glucose synthesis from amino acids. As hominins slowly began to evolve larger brains after having acquired a more secure and abundant food supply, further brain expansion would have depended on evolving significant fat stores and having reliable and rapid access to the fuel in those fat stores. Fat stores were necessary but were still not sufficient without a coincident increase in the capacity for ketogenesis. This unique combination of outstanding fuel store in body fat as well as rapid and abundant availability of ketones as a brain fuel that could seamlessly replace glucose was the key fuel reserve for expanding the hominin brain, a reserve that was apparently not available to other land – based mammals, including nonhuman primates.

It is indisputable that a ketogenic diet has protective effects in our brains. With all the evidence of its efficacy in mitochondrial dysfunction, it can be applied for all of us living in a highly stressful and toxic environment. Ketone bodies are healing bodies that helped us evolve and nowadays our mitochondria are always busted in some way or another since the odds in this toxic world are against us. Obviously, there are going to be people with such damaged mtDNA or with mutations they were born with, who can’t modify their systems (i.e. defects on L-carnitine metabolism), but even in some of those cases, they can halt or slow down further damage. Our healthy ancestors never had to deal with the levels of toxicity that we live nowadays and nevertheless, they ate optimally. Considering our current time and environment, the least we can do is eat optimally for our physiology.

The way to have healing ketone bodies circulating in our blood stream is to do a high fat, restricted carb and moderated protein diet. Coupled with intermittent fasting which will enhance the production of ketone bodies, and resistance training which will create mitochondria with healthier mtDNA, we can beat the odds against us.

What is considered nowadays a “normal diet” is actually an aberration based on the corruption of science which benefits Big Agra and Big Pharma. If we would go back in time to the days before the modern diet became normalized by corporative and agricultural interests, we will find that ketosis was the normal metabolic state. Today’s human metabolic state is aberrant. It is time to change that.

Source: health-matrix.net

References

[1] A research member of sott.net’s forum has diabetes type 1 and is doing the ketogenic diet. On normal circumstances, diabetics (including type I) report amazing results on a low-carbohydrate diet. See Dr. Bernstein’s Diabetics Solution by Richard K. Bernstein, MD (Little, Brown and Company: 2007).

[2] It varies among each person, but the general range is between 0 and 70 grams of carbs plus moderate intake of protein, between 0.8 and 1.5 grams of protein per kg of ideal body weight. Pregnant women and children should not have their protein restricted.

[3] Ketogenic diets in seizure control and neurologic disorders by Eric Kossoff, MD, Johns Hopkins Hospital, Baltimore, Maryland. The Art and Science of Low Carbohydrate Living by Jeff S. Volek, PhD, Rd and Stephen D. Phinney, MD, PhD. Beyond Obesity, LLC , 2011.

[4]A Paoli, A Rubini, J S Volek and K A Grimaldi. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. European Journal of Clinical Nutrition (2013) 67, 789–796

[5] Rainer J Klement, Ulrike Kämmerer. Is there a role for carbohydrate restriction in the treatment and prevention of cancer? Nutr Metab (Lond). Oct 26, 2011; 8: 75.

[6] If the genetic code is the hardware for life, the epigenetic code is software that determines how the hardware behaves.

[7] David N. Ruskin and Susan A. Masino, The Nervous System and Metabolic Dysregulation: Emerging Evidence Converges on Ketogenic Diet Therapy. Front Neurosci. 2012; 6: 33.

[8] Finkel T, Hwang PM. The Krebs cycle meets the cell cycle: mitochondria and the G1-S transition. Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):11825-6.

[9] Matthews C.M. Nurturing your divine feminine. Proc (Bayl Univ Med Cent). 2011 July; 24(3): 248.

[10] Hipkiss AR. Energy metabolism, altered proteins, sirtuins and ageing: converging mechanisms? Biogerontology. 2008 Feb;9(1):49-55.

[11] Saffran HA, Pare JM, Corcoran JA, et al. Herpes simplex virus eliminates host mitochondrial DNA. EMBO Rep. 2007 Feb;8(2):188-93.

[12] Porcellini E, Carbone I, et al. Alzheimer’s disease gene signature says: beware of brain viral infections. Immun Ageing. 2010 Dec 14;7:16.

[13] Gasior M, Rogawski MA, Hartman AL. Neuroprotective and disease-modifying effects of the ketogenic diet. Behav Pharmacol. 2006 Sep;17(5-6):431-9.

[14] Maalouf M, Rho JM, Mattson MP. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res Rev. 2009 Mar;59(2):293-315.

[15] Nylen K, Velazquez JL. The effects of a ketogenic diet on ATP concentrations and the number of hippocampal mitochondria in Aldh5a1(-/-) mice. Biochim Biophys Acta. 2009 Mar;1790(3):208-12.

[16] Bough K. Energy metabolism as part of the anticonvulsant mechanism of the ketogenic diet. Epilepsia. 2008 Nov;49 Suppl 8:91-3.

[17] Finn PF, Dice JF. Ketone bodies stimulate chaperone-mediated autophagy. J Biol Chem. 2005 Jul 8;280(27):25864-70.

[18] Yuk JM, Yoshimori T, Jo EK. Autophagy and bacterial infectious diseases. Exp Mol Med. 2012 Feb 29;44(2):99-108.

[19] Chandra Wickramasinghe, Milton Wainwright & Jayant Narlika. SARS – a clue to its origins? The Lancet, vol. 361, May 23, 2003, pp 1832.

[20] Yordy B, Iwasaki A. Autophagy in the control and pathogenesis of viral infection. Curr Opin Virol. 2011 Sep;1(3):196-203.

[21] Douglas C. Wallace, Weiwei Fan, and Vincent Procaccio. Mitochondrial Energetics and Therapeutics Annu Rev Pathol. 2010; 5: 297–348.

[22] Stephen Cunnane, Kathlyn Stewart.Human Brain Evolution: The Influence of Freshwater and Marine Food Resources. June 2010, Wiley-Blackwell.

Supplements: The Real Story Natural or Synthetic? Foods or Tablets?

It’s a nutritional “Catch 22”: The public is told, confusingly: “Vitamins are good, but vitamin supplements are not. Only vitamins from food will help you. So just eat a good diet. Do not take supplements! But by the way, there is no difference between natural and synthetic vitamins.”

Wait a minute. What’s the real story here?

A recent health study reported that the risk of heart failure decreased with increasing blood levels of vitamin C [1]. The benefit of vitamin C (ascorbate) was highly significant. Persons with the lowest plasma levels of ascorbate had the highest risk of heart failure, and persons with the highest levels of vitamin C had the lowest risk of heart failure. This finding confirms the knowledge derived over the last 50 years that vitamin C is a major essential factor in cardiovascular health [2,3]. The study raises several important questions about diet and vitamin supplements.

Was it Food or Supplements?

The report discussed vitamin C as if it were simply an indicator of how many fruits and vegetables were consumed by the participants. Yet, ironically, the study’s results show little improvement in the risk for heart failure from consuming fruits and vegetables. This implies that the real factor in reducing the risk was indeed the amount of vitamin C consumed. Moreover, the study appears to utterly ignore the widespread use of vitamin C supplements to improve cardiovascular health. In fact, out of four quartile groups, the quartile with the highest plasma vitamin C had six to ten times the rate of vitamin C supplementation of the lowest quartile, but this fact was not emphasized. This type of selective attention to food sources of vitamin C, while dismissing supplements as an important source, appears to be an attempt to marginalize the importance of vitamin supplements.

Many medical and nutritional reports have maintained that there is little difference between natural and synthetic vitamins. This is known to be true for some essential nutrients. The ascorbate found in widely available vitamin C tablets is identical to the ascorbate found in fruits and vegetables [3]. Linus Pauling emphasized this fact, and explained how ordinary vitamin C, inexpensively manufactured from glucose, could improve health in many important ways [4]. Indeed, the above-mentioned study specifically measured the plasma level of ascorbate, which was shown to be an important factor associated with lower risk of heart failure [1, 2]. The study did not measure blood plasma levels of the components of fruits and vegetables. It measured vitamin C.

A known rationale for this dramatic finding is that vitamin C helps to prevent inflammation in the arteries by several mechanisms. It is a necessary co-factor for the synthesis of collagen, which is a major component of arteries. Vitamin C is also an important antioxidant throughout the body that can help to recycle other antioxidants like vitamin E and glutathione in the artery walls [2,3]. This was underscored by a report that high plasma levels of vitamin C are associated with a 50% reduction in risk for stroke [5].

Yes, Synthetic Vitamin C is Clinically Effective

We can almost hear “Unsubscribe” links being clicked as we state it, but here it is: synthetic vitamin C works, in real people with real illnesses. Ascorbate’s efficacy has little direct relation to food intake. A dramatic case of this was a dairy farmer in New Zealand who was on life support with lung whiteout, kidney failure, leukemia and swine flu [6]. He was given 100,000 mg of vitamin C daily and his life was saved. We have nothing against oranges or other vitamin C-containing foods. Fruits and vegetables are good for you for many, many reasons. However, you’ll need to get out your calculator to help you figure out how many oranges it would take to get that much, and then also figure how to get a sick person to eat them all.

It is established that liver function improves with vitamin C supplementation, and it is equally well known that adequate levels of vitamin C are essential for the proper functioning of the immune system. Vitamin C improves the ability of the white blood cells to fight bacteria and viruses. OMNS has more articles expanding on this topic, available for free access at http://orthomolecular.org/resources/omns/index.shtml .

Deficiency of vitamin C is very common. According to US Department of Agriculture (USDA) data, [7] nearly half of Americans do not get even the US RDA of vitamin C, which is a mere 90 mg.

Synthetic Vitamin E is Less Effective

For some other nutrients, there is a significant difference in efficacy between synthetic and natural forms. Vitamin E is a crucial anti-oxidant, but also has other functions in the body, not all well understood. It comprises eight different biochemical forms, alpha-, beta-, delta- and gamma tocopherols, and alpha-, beta-, delta-, and gamma-tocotrienols. All of these forms of vitamin E are important for the body. Current knowledge about the function of vitamin E is rapidly expanding, and each of the eight forms of natural vitamin E is thought to have a slightly different function in the body. For example, gamma-tocotrienol actually kills prostate cancer stem cells better than chemotherapy does. ( http://orthomolecular.org/resources/omns/v07n11.shtml )

Synthetic vitamin E is widely available and inexpensive. It is “DL-alpha-tocopherol.” Yes, it has the same antioxidant properties in test tube experiments as does the natural “D-alpha-tocopherol” form. However, the DL- form has only 50% of the biological efficacy, because the body utilizes only the natural D isomer, which comprises half of the synthetic mix [8]. Therefore, studies utilizing DL-alpha-tocopherol that do not take this fact into account are starting with an already-halved dose that will naturally lead to a reduction in the observed efficacy.

Then there are the esterified forms of vitamin E such as acetate or succinate. These esterified forms, either natural or synthetic, have a greater shelf life because the ester protects the vitamin E from being oxidized and neutralized. When acid in the stomach cleaves the acetate or succinate component from the original natural vitamin E molecule, the gut can then absorb a good fraction and the body receives its antioxidant benefit. But when esterified vitamin E acetate is applied to the skin to prevent inflammation, it is ineffective because there is no acid present to remove the acetate ester.

Based on USDA data [9] an astonishing 90% of Americans do not get the RDA of vitamin E, which is, believe it or not, under 23 IU (15mg) per day.

Magnesium Deficiency is Widespread

Magnesium is another example. Over two-thirds of the population do not get the RDA of magnesium.[10] Deficiency can cause a wide variety of symptoms, including osteoporosis, high blood pressure, heart disease, asthma, depression, and diabetes. Magnesium can be purchased in many forms. The most widely available form is magnesium oxide, which is not very effective because it is only about 5% absorbed [11]. Magnesium oxide supplements are popular because the pills are smaller — they contain more magnesium, but won’t help most people. Better forms of magnesium are magnesium citrate, magnesium malate, and the best absorbed is magnesium chloride. It’s always good to consult your doctor to determine your ideal intake. Testing may reveal unexpected deficiency. [12]

Well, Which? Natural or Synthetic?

While the natural form of vitamin E (mixed natural tocopherols and tocotrienols) is at least twice as effective as the synthetic form, this is not true of vitamin C. The ascorbate that the body gets from fruits and vegetables is the same as the ascorbate in vitamin C tablets. On first thought, this may sound confusing, because there are many so-called “natural” forms of vitamin C widely available. But virtually every study that demonstrated that supplemental vitamin C fights illness used plain, cheap, synthetic ascorbic acid. Other forms of ascorbate, for instance, the sodium or magnesium salt of ascorbic acid, are digested slightly differently by the gut, but once the ascorbate molecule is absorbed from these forms, it has identical efficacy. The advantage of these ascorbate salts is that they are non-acidic and can be ingested or topically applied to any part of the body without concern about irritation from acidity.

Further, it is known that essential nutrients are symbiotic, that is, they are more effective when taken as a group in proper doses. For example, vitamin E is more effective when taken along with vitamin C and selenium, because each of these essential nutrients can improve the efficacy of the others. Similarly, the B vitamins are more effective when taken together. Readers with dosage questions will want to consult their healthcare provider, and also look at freely available information archived at http://orthomolecular.org/resources/omns/index.shtml .

Food Factors

Natural food factors are also important. Bioflavonoids and other vitamin C-friendly components in fresh fruits and vegetables (sometimes called “vitamin C complex”) do indeed have health benefits. These natural components are easily obtained from a healthy, unprocessed whole foods diet. However, eating even a very good diet does not supply nearly enough vitamin C to be effective against illness. A really good diet might provide several hundred milligrams of vitamin C daily. An extreme raw food diet might provide two or three thousand milligrams of vitamin C, but this is not practical for most people. Supplementation, with a good diet, is.

The principle that “natural” vitamins are better than synthetic vitamins is a widely quoted justification for actually avoiding vitamin supplements. The argument goes, because vitamins and minerals are available from food in their natural form, that somehow one might suppose that we are best off by ignoring supplements. Apparently this is what the authors of the above-mentioned study had in mind, because the report hardly mentions vitamin supplements.

Conclusion

In the real world of today’s processed food, most of us don’t get all the nutrients we need in adequate doses. Most people are deficient in several of the essential nutrients. These deficiencies are responsible for much suffering, including heart disease, cancer, premature aging, dementia, diabetes, and other diseases such as eye disease, multiple sclerosis and asthma. The above-mentioned study showing the efficacy of vitamin C in reducing heart failure is but one of the many studies showing the value of vitamins. Others are discussed and available at http://orthomolecular.org/resources/omns/index.shtml .

For vitamin E, the natural form, taken in adequate doses along with a nutritious diet, is the best medicine. However, for most vitamins, including vitamin C, the manufactured form is identical to the natural one. Both are biologically active and both work clinically. It all comes down to dose. Supplements enable optimum intake; foods alone do not.

Don’t be fooled: nutrient deficiency is the rule, not the exception. That’s why we need supplements. When ill, we need them even more.

 

References:

1. Pfister R, Sharp SJ, Luben R, Wareham NJ, Khaw KT. (2011) Plasma vitamin C predicts incident heart failure in men and women in European Prospective Investigation into Cancer and Nutrition-Norfolk prospective study. Am Heart J. 162:246-253. See also: http://orthomolecular.org/resources/omns/v07n14.shtml

2. Levy TE (2006) Stop America’s #1 Killer: Reversible Vitamin Deficiency Found to be Origin of All Coronary Heart Disease. ISBN-13: 9780977952007

3. Hickey S, Saul AW (2008) Vitamin C: The Real Story, the Remarkable and Controversial Healing Factor. Basic Health Publications, ISBN-13: 978-1591202233.

4. Pauling L. (2006) How to Live Longer And Feel Better. Oregon State University Press, Corvallis, OR. ISBN-13: 9780870710964.

5. Kurl S, Tuomainen TP, Laukkanen JA, Nyyssönen K, Lakka T, Sivenius J, Salonen JT. (2002) Plasma vitamin C modifies the association between hypertension and risk of stroke. Stroke. 33:1568-1573.

6. Watch the Channel 3 New Zealand news report at http://www.3news.co.nz/Living-Proof-Vitamin-C—Miracle-Cure/tabid/371/articleID/171328/Default.aspx or http://www.dailymotion.com/video/xh70sx_60-minutes-scoop-on-new-zealand-farmer-vit-c-miracle_tech [ Note that each video is proceeded by a commercial, over which we have no control, and with which we have no financial connection whatsoever. ]

7. Free, full text paper at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1405127/pdf/amjph00225-0021.pdf

8. Papas A. (1999) The Vitamin E Factor: The miraculous antioxidant for the prevention and treatment of heart disease, cancer, and aging. HarperCollins, NY. ISBN-13: 9780060984434

9. http://lpi.oregonstate.edu/infocenter/vitamins/vitaminE/ ; scroll down to “Deficiency.”

10. Free, full text paper at http://www.jacn.org/content/24/3/166.full.pdf+html (or http://www.jacn.org/content/24/3/166.long )

11. Dean, C. (2007) The Magnesium Miracle. Ballantine Books, ISBN-13: 9780345494580

12. http://www.doctoryourself.com/epilepsy.html

 

Nutritional Medicine is Orthomolecular Medicine

Orthomolecular medicine uses safe, effective nutritional therapy to fight illness. For more information: http://www.orthomolecular.org

Symptoms of Magnesium Deficiency

Dr. Peter Osborne gives an easy-to-follow guide to the importance of magnesium levels in maintaining optimal health.

Signs & Symptoms of Magnesium Deficiency:

  • Poor immune function
  • Bone Loss
  • Muscle pain and muscle twitching
  • Depression
  • High Blood Pressure
  • Increase cholesterol
  • Hypoglycemia or other blood sugar problems
  • Fatigue
  • Thyroid Disease

Magnesium has been shown to be beneficial in the following conditions:

  • Migraine Headaches
  • Infertility
  • High blood pressure
  • Type I and Type II Diabetes
  • Osteoporosis
  • Thyroid Disease

Drugs or additives that may deplete or interfere with metabolism:

  • Alcohol
  • Corticosteroids
  • High Blood Pressure Medications (diuretics)
  • Caffeine
  • Birth Control Pills (estrogen)

Laboratory Testing:

  • Lymphocyte proliferation assays (Spectracell labs)
  • Red Blood Cell testing
  • Serum testing (not accurate)

Food Sources:

Vegetables and fruits, pumpkin seeds (very high)

 

© Dr. Peter Osborne

Why salt doesn’t deserve its bad rap

For something that’s so often mixed with anti-caking agents, salt takes a lot of lumps in the American imagination. Like fat, people tend to think of it as an unnecessary additive — something to be avoided by seeking out processed foods that are “free” of it. But also like fat, salt is an essential component of the human diet — one that has been transformed into unhealthy forms by the food industry.

Historically, though, salt was prized. Its reputation can be found in phrases like, “Worth one’s salt,” meaning, “Worth one’s pay,” since people were often paid in salt and the word itself is derived from the Latin salarium, or salary.

Those days are long over. Doctors and dietitians, along with the USDA dietary guidelines, recommend eating a diet low in sodium to prevent high blood pressure, risk of cardiovascular disease, and stroke; and doctors have been putting their patients on low-salt diets since the 1970s. But a new study, published in the May 4 issue of The Journal of the American Medical Association (JAMA), found that low-salt diets actually increase the risk of death from heart attack and stroke — and in fact don’t prevent high blood pressure.

The study’s findings inspired much criticism and controversy — as research that challenges conventional dietary wisdom often does. When The New York Times briefly reported on it, even the title conveyed the controversy: “Low-Sat Diet Ineffective, Study Finds. Disagreement Abounds.” The Times reports that the Centers for Disease Control and Prevention “felt so strongly that the study was flawed that they criticized it in an interview, something they normally do not do.” According to the Times, Peter Briss, a medical director at the Centers, said that the study was small, that its subjects were young, and that they had few cardiovascular events — making it hard to draw conclusions.

But most of all, Briss and others criticized the study because it challenges dietary dogma on sodium intake. These experts claim that a body of evidence establishes sodium consumption as a serious driver of cardiovascular disease. But if you take a careful look at the evidence, you’ll see that the case against sodium crumbles under the weight of its contradictions. Gary Taubes wrote about the controversy on the benefits of salt reduction more than 10 years ago in a piece for Science called “The (Political) Science of Salt.” He portrayed a clash between the desire for immediate and simple answers and the requirements of good science. “This is the conflict that fuels many of today’s public health controversies,” Taubes asserted.

The JAMA study published early this month is not the first to find that a low-salt diet may be detrimental. In 2006, data from the NHANES II study showed that death from heart disease and all causes rose with lower salt consumption. Published in the American Journal of Medicine, the report found:

Lower sodium has been associated with stimulation of the sympathetic nervous system, that, in turn, has been associated with adverse [cardiovascular disease] and mortality outcomes. Sodium restriction may also influence insulin resistance.

The insulin resistance association is compelling since so many Americans are exhibiting signs of insulin resistance, the precursor to diabetes. Michael Alderman, a blood-pressure researcher at Albert Einstein College of Medicine and editor of the American Journal of Hypertension, said in an email, “The problem with reducing sodium enough to change blood pressure [is that it] has other effects — including increasing insulin resistance, increasing sympathetic nerve activity, and activating the renin-angiotensin system and increasing aldosterone secretion. All bad things for the cardiovascular system.”

There are those who will argue that any study claiming that sodium is not as harmful as previously believed are connected to the salt lobby, but this is untrue. The most recent JAMA study has no such connection and many real-food advocates, myself included, believe that salt is an essential part of a healthy diet. Alderman was once an unpaid consultant for the Salt Institute but no longer is, according to the Times article.

There is also a strange psychological component to this debate as is often seen in the nutrition world: When a message has been hammered in and repeated millions of times over the course of decades, whether or not that message is actually true becomes irrelevant — and the people invested in presenting that message, whether for monetary gain or not, are especially resistant to any evidence that might be contrary. When asked about this phenomenon and the standard recommendations on salt, Alderman said, “They are based upon the hope that the blood pressure effect of lowering sodium would translate into a benefit in health. Opposition to these findings — which only adds to a substantial body of similar information — is that these folks have long held the faith that lowering sodium was a good idea. They have opposed randomized trials with the bogus argument that a randomized controlled trial would be too tough and expensive. Not so. They choose faith over science, but it’s not a theological issue.”

Witness the low-fat campaign that has raged on for decades despite research that now shows the low-fat campaign was actually based on little scientific evidence. When it comes to the fat debate, the crucial issue is determining which fats are healthy and which fats are not: Real, whole-food sources of fats, like butter and eggs, are healthy while industrially produced sources of fats, like partially hydrogenated oils or trans-fats, are not. Real fats and industrial fats cannot be lumped into the same category, and when they are, as is often the case in scientific research, the results are muddled. This was the case with studies on coconut oil, which used partially hydrogenated versions to determine that coconut oil was unhealthy, tarnishing it with a reputation as one of the worst fats. Meanwhile, recent research using unprocessed coconut oil shows that it is actually a healthy fat with a host of health benefits.

As for salt, the same logic can be applied. There are no studies based on a diet that draws its sodium from unrefined salt and from foods containing naturally occurring salt (like zucchini, celery, seaweed, oysters, shrimp, beets, spinach, fish, olives, eggs, red meat, and garbanzo beans). Clearer answers would surely emerge with a study like this.

The differences between refined and unrefined salt are significant. (Make sure you use unrefined sea salt, as other sea salts can be just as processed as ordinary table salt.) Unrefined sea salt contains about 82 percent sodium chloride and the rest is comprised of essential minerals including magnesium and calcium; and trace elements, like iodine, potassium, and selenium. Not coincidentally, they help with maintaining fluid balance and replenishing electrolytes.

Refined, processed salt is actually an industrial leftover, according to Nina Planck’s book Real Food. Planck describes how the chemical industry removes the valuable trace elements found in salt and heats it 1,200 degrees F. What’s left is 100 percent sodium chloride, plus industrial additives including aluminum, anticaking agents, and dextrose, which stains the salt purple. To gain its pure-white sheen, the salt is then bleached. Thus refined salt is hardly a whole food; and consuming a jolt of sodium chloride upsets fluid balance and dehydrates cells, to say nothing of the harm the various additives and bleach residues may cause.

But what’s fascinating about this most recent study is that even in monitoring those on a largely industrial foods diet, consuming what’s considered high levels of salt, the results indicate that even this is better than a low-sodium diet.

Why might this be? Sodium is one of the two major electrolytes our bodies need to function properly, and like any other element, nutrient, vitamin, or mineral we put into our bodies, it does not exist or function in isolation. Sodium is important for maintaining blood volume, it works in concert with potassium, which is needed for vasodilatation or constriction, and it also interacts with calcium, which is needed for vascular smooth muscle tone. Sodium exists in all of the fluids in our body and is essential to water balance regulation, nerve stimulation, and proper function of the adrenal glands. It is also crucial to maintaining mental acuity — sodium is required to activate glial cells in the brain — these cells make up 90 percent of the brain and are what makes us think faster and make connections. This is part of the reason sodium deficiency (sunstroke, heat exhaustion) leads to confusion and lethargy as the human brain is extremely sensitive to changing sodium levels in the body.

Like fat, salt was prized by traditional cultures. Those groups that were landlocked often burned sodium-rich marsh grasses and added the ash to their foods to acquire healthy amounts of salt and they traded with peoples living near the ocean for fish and salt. The tendency of scientific studies to isolate parts of our foods and determine whether or not they are good or bad obfuscates a clear picture of the larger processes involved in eating and metabolizing in the human body. It also complicates something that shouldn’t be complicated: eating real, whole foods as they exist in nature. Isolating and demonizing certain aspects of real, whole foods — like fat and salt — only confuses the public.

Kristin Wartman is a food writer living in Brooklyn. She has a Masters in Literature from UC Santa Cruz and is a Certified Nutrition Educator. She is interested in the intersections of food, health, politics, and culture. You can read more of her writing at kristinwartman.wordpress.com.

Health news: Zinc pills 'help rosacea'

Zinc tablets may be a new treatment for rosacea, the chronic skin condition which leads to facial flushing. Pilot studies have shown benefits within just four weeks. Now a larger trial is under way.

Around 5 per cent of Britons suffer from rosacea. The exact cause is unknown, but one theory is that it is caused by H. pylori bacteria, found in the digestive system.

The bacteria may stimulate the production of a protein, which causes blood vessels to expand, leading to the characteristic reddening.

Another suggestion is that it’s caused by a tiny mite that lives on the skin – higher numbers have been found on sufferers.

In the new American trial, 80 people will take 200mg zinc sulphate for 90 days. Zinc has been found to be an effective treatment for several skin conditions, including acne and warts, possibly because it works against bacteria.
Read more: http://www.dailymail.co.uk/health/article-1268990/Health-news-Zinc-pills-help-relieve-rosacea-hearing-aid-small-jelly-bean-tequila-plant-holds-secret-good-bones.html?ITO=1490